Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons.
نویسندگان
چکیده
The effects of muscarinic stimulation on the membrane potential and current of in situ rat entorhinal-cortex layer-II principal neurons were analyzed using the whole cell, patch-clamp technique. In current-clamp experiments, application of carbachol (CCh) induced a slowly developing, prolonged depolarization initially accompanied by a slight decrease or no significant change in input resistance. By contrast, in a later phase of the depolarization input resistance appeared consistently increased. To elucidate the ionic bases of these effects, voltage-clamp experiments were then carried out. In recordings performed in nearly physiological ionic conditions at the holding potential of -60 mV, CCh application promoted the slow development of an inward current deflection consistently associated with a prominent increase in current noise. Similarly to voltage responses to CCh, this inward-current induction was abolished by the muscarinic antagonist, atropine. Current-voltage relationships derived by applying ramp voltage protocols during the different phases of the CCh-induced inward-current deflection revealed the early induction of an inward current that manifested a linear current/voltage relationship in the subthreshold range and the longer-lasting block of an outward K(+) current. The latter current could be blocked by 1 mM extracellular Ba(2+), which allowed us to study the CCh-induced inward current (I(CCh)) in isolation. The extrapolated reversal potential of the isolated I(CCh) was approximately 0 mV and was not modified by complete substitution of intrapipette K(+) with Cs(+). Moreover, the extrapolated I(CCh) reversal shifted to approximately -20 mV on removal of 50% extracellular Na(+). These results are consistent with I(CCh) being a nonspecific cation current. Finally, noise analysis of I(CCh) returned an estimated conductance of the underlying channels of approximately 13.5 pS. We conclude that the depolarizing effect of muscarinic stimuli on entorhinal-cortex layer-II principal neurons depends on both the block of a K(+) conductance and the activation of a "noisy" nonspecific cation current. We suggest that the membrane current fluctuations brought about by I(CCh) channel noise may facilitate the "theta" oscillatory dynamics of these neurons and enhance firing reliability and synchronization.
منابع مشابه
Spike patterning by Ca2+-dependent regulation of a muscarinic cation current in entorhinal cortex layer II neurons.
In entorhinal cortex layer II neurons, muscarinic receptor activation promotes depolarization via activation of a nonspecific cation current (I(NCM)). Under muscarinic influence, these neurons also develop changes in excitability that result in activity-dependent induction of delayed firing and bursting activity. To identify the membrane processes underlying these phenomena, we examined whether...
متن کاملSpike Patterning by Ca -Dependent Regulation of a Muscarinic Cation Current in Entorhinal Cortex Layer II Neurons
Magistretti, Jacopo, Li Ma, Mark H. Shalinsky, Wei Lin, Ruby Klink, and Angel Alonso. Spike patterning by Ca -dependent regulation of a muscarinic cation current in entorhinal cortex layer II neurons. J Neurophysiol 92: 1644–1657, 2004. First published May 19, 2004; 10.1152/jn.00036.2004. In entorhinal cortex layer II neurons, muscarinic receptor activation promotes depolarization via activatio...
متن کاملMuscarinic induction of synchronous population activity in the entorhinal cortex.
Oscillation and synchronization of neural activity is important in normal brain function but is also relevant to epileptogenesis. One of the most frequent forms of epilepsy originates in temporal lobe circuitry of which the entorhinal cortex (EC) is crucial. Because muscarinic receptor activation promotes oscillatory dynamics in EC neurons, we investigated in a brain slice preparation the effec...
متن کاملMuscarinic activation of a voltage-dependent cation nonselective current in rat association cortex.
The ionic mechanism underlying the acetylcholine-induced depolarization of layer V pyramidal neurons of rat prefrontal cortex was examined using whole-cell recording in in vitro rat brain slices. Consistent with previous results, pressure application of acetylcholine to layer V pyramidal neurons elicited a strong depolarization. Pharmacological analysis of this response indicated that it was me...
متن کاملModulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats.
Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2002